Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3947, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729951

RESUMO

Gram-negative bacteria (GNB) are a major cause of neonatal sepsis in low- and middle-income countries (LMICs). Although the World Health Organization (WHO) reports that over 80% of these sepsis deaths could be prevented through improved treatment, the efficacy of the currently recommended first- and second-line treatment regimens for this condition is increasingly affected by high rates of drug resistance. Here we assess three well known antibiotics, fosfomycin, flomoxef and amikacin, in combination as potential antibiotic treatment regimens by investigating the drug resistance and genetic profiles of commonly isolated GNB causing neonatal sepsis in LMICs. The five most prevalent bacterial isolates in the NeoOBS study (NCT03721302) are Klebsiella pneumoniae, Acinetobacter baumannii, E. coli, Serratia marcescens and Enterobacter cloacae complex. Among these isolates, high levels of ESBL and carbapenemase encoding genes are detected along with resistance to ampicillin, gentamicin and cefotaxime, the current WHO recommended empiric regimens. The three new combinations show excellent in vitro activity against ESBL-producing K. pneumoniae and E. coli isolates. Our data should further inform and support the clinical evaluation of these three antibiotic combinations for the treatment of neonatal sepsis in areas with high rates of multidrug-resistant Gram-negative bacteria.


Assuntos
Acinetobacter baumannii , Antibacterianos , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Sepse Neonatal , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Sepse Neonatal/microbiologia , Sepse Neonatal/tratamento farmacológico , Recém-Nascido , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/genética , Amicacina/farmacologia , Amicacina/uso terapêutico , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Países em Desenvolvimento , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Enterobacter cloacae/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Biomacromolecules ; 25(5): 3169-3177, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38684138

RESUMO

Achieving precise control over gelator alignment and morphology is crucial for crafting tailored materials and supramolecular structures with distinct properties. We successfully aligned the self-assembled micelles formed by a functionalized dipeptide 2NapFF into long 1-D "gel noodles" by cross-linking with divalent metal chlorides. We identify the most effective cross-linker for alignment, enhancing mechanical stability, and imparting functional properties. Our study shows that Group 2 metal ions are particularly suited for creating mechanically robust yet flexible gel noodles because of their ionic and nondirectional bonding with carboxylate groups. In contrast, the covalent nature and high directional bonds of d-block metal ions with carboxylates tend to disrupt the self-assembly of 2NapFF. Furthermore, the 2NapFF-Cu noodles demonstrated selective antibacterial activity, indicating that the potent antibacterial property of the copper(II) ion is preserved within the cross-linked system. By merging insights into molecular alignment, gel extrusion processing, and integrating specific functionalities, we illustrate how the versatility of dipeptide-based gels can be utilized in creating next-generation soft materials.


Assuntos
Antibacterianos , Cobre , Géis , Antibacterianos/química , Antibacterianos/farmacologia , Cobre/química , Cobre/farmacologia , Géis/química , Reagentes de Ligações Cruzadas/química , Dipeptídeos/química , Dipeptídeos/farmacologia , Micelas , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
3.
Ecotoxicol Environ Saf ; 276: 116324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636260

RESUMO

Fungal laccase has strong ability in detoxification of many environmental contaminants. A putative laccase gene, LeLac12, from Lentinula edodes was screened by secretome approach. LeLac12 was heterogeneously expressed and purified to characterize its enzymatic properties to evaluate its potential use in bioremediation. This study showed that the extracellular fungal laccase from L. edodes could effectively degrade tetracycline (TET) and the synthetic dye Acid Green 25 (AG). The growth inhibition of Escherichia coli and Bacillus subtilis by TET revealed that the antimicrobial activity was significantly reduced after treatment with the laccase-HBT system. 16 transformation products of TET were identified by UPLC-MS-TOF during the laccase-HBT oxidation process. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that LeLac12 could completely mineralize ring-cleavage products. LeLac12 completely catalyzed 50 mg/L TET within 4 h by adding AG (200 mg/L), while the degradation of AG was above 96% even in the co-contamination system. Proteomic analysis revealed that central carbon metabolism, energy metabolism, and DNA replication/repair were affected by TET treatment and the latter system could contribute to the formation of multidrug-resistant strains. The results demonstrate that LeLac12 is an efficient and environmentally method for the removal of antibiotics and dyes in the complex polluted wastewater.


Assuntos
Biodegradação Ambiental , Corantes , Lacase , Proteômica , Cogumelos Shiitake , Tetraciclina , Lacase/metabolismo , Lacase/genética , Tetraciclina/toxicidade , Tetraciclina/farmacologia , Corantes/toxicidade , Corantes/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Bacillus subtilis/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia
4.
Microbiol Spectr ; 12(5): e0420623, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534122

RESUMO

Plasmids are the primary vectors of horizontal transfer of antibiotic resistance genes among bacteria. Previous studies have shown that the spread and maintenance of plasmids among bacterial populations depend on the genetic makeup of both the plasmid and the host bacterium. Antibiotic resistance can also be acquired through mutations in the bacterial chromosome, which not only confer resistance but also result in changes in bacterial physiology and typically a reduction in fitness. However, it is unclear whether chromosomal resistance mutations affect the interaction between plasmids and the host bacteria. To address this question, we introduced 13 clinical plasmids into a susceptible Escherichia coli strain and three different congenic mutants that were resistant to nitrofurantoin (ΔnfsAB), ciprofloxacin (gyrA, S83L), and streptomycin (rpsL, K42N) and determined how the plasmids affected the exponential growth rates of the host in glucose minimal media. We find that though plasmids confer costs on the susceptible strains, those costs are fully mitigated in the three resistant mutants. In several cases, this results in a competitive advantage of the resistant strains over the susceptible strain when both carry the same plasmid and are grown in the absence of antibiotics. Our results suggest that bacteria carrying chromosomal mutations for antibiotic resistance could be a better reservoir for resistance plasmids, thereby driving the evolution of multi-drug resistance.IMPORTANCEPlasmids have led to the rampant spread of antibiotic resistance genes globally. Plasmids often carry antibiotic resistance genes and other genes needed for its maintenance and spread, which typically confer a fitness cost on the host cell observed as a reduced growth rate. Resistance is also acquired via chromosomal mutations, and similar to plasmids they also reduce bacterial fitness. However, we do not know whether resistance mutations affect the bacterial ability to carry plasmids. Here, we introduced 13 multi-resistant clinical plasmids into a susceptible and three different resistant E. coli strains and found that most of these plasmids do confer fitness cost on susceptible cells, but these costs disappear in the resistant strains which often lead to fitness advantage for the resistant strains in the absence of antibiotic selection. Our results imply that already resistant bacteria are a more favorable reservoir for multi-resistant plasmids, promoting the ascendance of multi-resistant bacteria.


Assuntos
Antibacterianos , Cromossomos Bacterianos , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Mutação , Plasmídeos , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Antibacterianos/farmacologia , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Aptidão Genética , Ciprofloxacina/farmacologia , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistência Bacteriana/genética , Estreptomicina/farmacologia
5.
Protein Expr Purif ; 219: 106475, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552891

RESUMO

AA139, a variant of natural antimicrobial peptide (AMP) arenicin-3, displayed potent activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria. Nevertheless, there were currently few reports on the bioprocess of AA139, and the yields were less than 5 mg/L. Additionally, it was difficult and expensive to prepare AA139 through chemical synthesis due to its complex structure. These factors have impeded the further research and following clinical application of AA139. Here, we reported a bioprocess for the preparation of AA139, which was expressed in Escherichia coli (E. coli) BL21 (DE3) intracellularly in a soluble form via SUMO (small ubiquitin-related modifier) fusion technology. Then, recombinant AA139 (rAA139, refer to AA139 obtained by recombinant expression in this study) was obtained through the simplified downstream process, which was rationally designed in accordance with the physicochemical characteristics. Subsequently, the expression level of the interest protein was increased by 54% after optimization of high cell density fermentation (HCDF). Finally, we obtained a yield of 56 mg of rAA139 from 1 L culture with a purity of 98%, which represented the highest reported yield of AA139 to date. Furthermore, various characterizations were conducted to confirm the molecular mass, disulfide bonds, and antimicrobial activity of rAA139.


Assuntos
Peptídeos Antimicrobianos , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacologia , Fermentação , Expressão Gênica
7.
Microb Genom ; 8(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35084301

RESUMO

Macrolides are broad-spectrum antibiotics used to treat a range of infections. Resistance to macrolides is often conferred by mobile resistance genes encoding Erm methyltransferases or Mph phosphotransferases. New erm and mph genes keep being discovered in clinical settings but their origins remain unknown, as is the type of macrolide resistance genes that will appear in the future. In this study, we used optimized hidden Markov models to characterize the macrolide resistome. Over 16 terabases of genomic and metagenomic data, representing a large taxonomic diversity (11 030 species) and diverse environments (1944 metagenomic samples), were searched for the presence of erm and mph genes. From this data, we predicted 28 340 macrolide resistance genes encoding 2892 unique protein sequences, which were clustered into 663 gene families (<70 % amino acid identity), of which 619 (94 %) were previously uncharacterized. This included six new resistance gene families, which were located on mobile genetic elements in pathogens. The function of ten predicted new resistance genes were experimentally validated in Escherichia coli using a growth assay. Among the ten tested genes, seven conferred increased resistance to erythromycin, with five genes additionally conferring increased resistance to azithromycin, showing that our models can be used to predict new functional resistance genes. Our analysis also showed that macrolide resistance genes have diverse origins and have transferred horizontally over large phylogenetic distances into human pathogens. This study expands the known macrolide resistome more than ten-fold, provides insights into its evolution, and demonstrates how computational screening can identify new resistance genes before they become a significant clinical problem.


Assuntos
Bactérias/crescimento & desenvolvimento , Biologia Computacional/métodos , Farmacorresistência Bacteriana , Macrolídeos/farmacologia , Metiltransferases/genética , Fosfotransferases/genética , Azitromicina/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias/genética , Eritromicina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Evolução Molecular , Cadeias de Markov , Metagenômica , Testes de Sensibilidade Microbiana , Família Multigênica , Filogenia
8.
J Oleo Sci ; 71(2): 257-265, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35034942

RESUMO

Biogenic synthesis of silver nanoparticles (AgNPs) is more eco-friendly and cost-effective approach as compared to the conventional chemical synthesis. Biologically synthesized AgNPs have been proved as therapeutically effective and valuable compounds. In this study, the four bacterial strains Escherichia coli (MT448673), Pseudomonas aeruginosa (MN900691), Bacillus subtilis (MN900684) and Bacillus licheniformis (MN900686) were used for the biogenic synthesis of AgNPs. Agar well diffusion assay revealed to determine the antibacterial activity of all biogenically synthesized AGNPs showed that P. aeruginosa AgNPs possessed significantly high (p < 0.05) antibacterial potential against all tested isolates. The one-way ANOVA test showed that that P. aeruginosa AgNPs showed significantly (p < 0.05) larger zones of inhibition (ZOI: 19 to 22 mm) compared to the positive control (rifampicin: 50 µg/mL) while no ZOI was observed against negative control (Dimethyl sulfoxide: DMSO). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) concentration against four test strains also showed that among all biogenically synthesized NPs, P. aeruginosa AgNPs showed effective MIC (3.3-3.6 µg/mL) and MBC (4.3-4.6 µg/mL). Hence, P. aeruginosa AGNPs were characterized using visual UV vis-spectroscopy, X-ray diffractometer (XRD), fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The formation of peak around 430 nm indicated the formation of AgNPs while the FTIR confirmed the involvement of biological molecules in the formation of nanoparticles (NPs). SEM revealed that the NPs were of approximately 40 nm. Overall, this study suggested that the biogenically synthesized nanoparticles could be utilized as effective antimicrobial agents for effective disease control.


Assuntos
Antibacterianos , Nanopartículas Metálicas/química , Compostos de Prata/síntese química , Compostos de Prata/farmacologia , Ágar , Bacillus licheniformis/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Análise Custo-Benefício , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pseudomonas aeruginosa/efeitos dos fármacos , Compostos de Prata/química , Difração de Raios X
9.
Acta Chim Slov ; 68(4): 833-848, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34918766

RESUMO

The removal of mixture of two azo dyes, Acid blue 29 and Ponceau xylidine, was studied by heterogeneous Fenton and Fenton-type processes using hydrogen peroxide and sodium persulphate as oxidants in the presence of and nano and micro- particles as catalysts. The synthesised nano- particles were characterised using analytical techniques viz. FT-IR, TEM, EDX, powder XRD and VSM. We have examined the effects of particle size on the COD removal efficiency and the reusability of the catalyst after optimising pH, and concentrations of catalyst and oxidant. Combination of nano-  and hydrogen peroxide possessed higher COD removal efficiency, which was accelerated in acidic pH and inhibited at pH > 6. Total consumption of hydrogen peroxide confirmed the efficiency of the optimised parameters. The mechanism of the formation of intermediate ions and products are proposed. COD removal and consumption of hydrogen peroxide follow pseudo-first-order kinetics. The toxicity of the solutions was assessed using Aliivibrio fischeri light loss and Escherichia coli growth inhibition assays. Both the assays showed different toxicity levels for the same solution.


Assuntos
Corantes/química , Peróxido de Hidrogênio/química , Ferro/química , Aliivibrio fischeri/efeitos dos fármacos , Compostos Azo/química , Compostos Azo/isolamento & purificação , Compostos Azo/farmacologia , Catálise , Corantes/isolamento & purificação , Corantes/farmacologia , Escherichia coli/efeitos dos fármacos , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas Metálicas/química , Naftalenos/química , Naftalenos/isolamento & purificação , Naftalenos/farmacologia , Oxirredução , Tamanho da Partícula , Compostos de Sódio/química , Sulfatos/química
10.
Mutagenesis ; 36(5): 380-387, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34459491

RESUMO

The main bactericidal components of cold atmospheric plasma (CAP) are thought to be reactive oxygen and nitrogen species (RONS) and UV-radiation, both of which have the capacity to cause DNA damage and mutations. Here, the mutagenic effects of CAP on Escherichia coli were assessed in comparison to X- and UV-irradiation. DNA damage and mutagenesis were screened for using a diffusion-based DNA fragmentation assay and modified Ames test, respectively. Mutant colonies obtained from the latter were quantitated and sequenced. CAP was found to elicit a similar mutation spectrum to X-irradiation, which did not resemble that for UV implying that CAP-produced RONS are more likely the mutagenic component of CAP. CAP treatment was also shown to promote resistance to the antibiotic ciprofloxacin. Our data suggest that CAP treatment has mutagenic effects that may have important phenotypic consequences.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Gases em Plasma/farmacologia , Dano ao DNA/efeitos dos fármacos , Fragmentação do DNA , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Mutagênese/efeitos dos fármacos , Raios Ultravioleta , Raios X
11.
Food Chem Toxicol ; 155: 112378, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34217738

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients, mostly consisting of a variety of essential oils and botanical extracts. This publication, seventh in the series, re-evaluates NFCs with constituent profiles dominated by phenolic derivatives including carvacrol, thymol and related compounds using a constituent-based procedure first published in 2005 and updated in 2018. The procedure is based on the chemical characterization of each NFC as intended for commerce and the estimated intake of the constituent congeneric groups. The procedure applies the threshold of toxicological concern (TTC) concept and evaluates relevant data on absorption, metabolism, genotoxic potential and toxicology of the constituent congeneric groups and the NFC under evaluation. Herein, the FEMA Expert Panel affirmed the generally recognized as safe (GRAS) status of seven phenolic derivative-based NFCs, Origanum Oil (Extractive) (FEMA 2828), Savory Summer Oil (FEMA 3013), Savory Summer Oleoresin (FEMA 3014), Savory Winter Oil (FEMA 3016), Savory Winter Oleoresin (FEMA 3017), Thyme Oil (FEMA 3064) and Thyme White Oil (FEMA 3065) under their conditions of intended use as flavor ingredients.


Assuntos
Aromatizantes/toxicidade , Óleos Voláteis/toxicidade , Fenóis/toxicidade , Óleos de Plantas/toxicidade , Animais , Qualidade de Produtos para o Consumidor , Escherichia coli/efeitos dos fármacos , Feminino , Aromatizantes/química , Masculino , Camundongos Endogâmicos ICR , Testes de Mutagenicidade , Nível de Efeito Adverso não Observado , Óleos Voláteis/química , Origanum/química , Fenóis/química , Óleos de Plantas/química , Ratos Sprague-Dawley , Ratos Wistar , Medição de Risco , Salmonella typhimurium/efeitos dos fármacos , Thymus (Planta)/química
12.
Sci Rep ; 11(1): 14775, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285253

RESUMO

Infection diagnosis and antibiotic susceptibility testing (AST) are pertinent clinical microbiology practices that are in dire need of improvement, due to the inadequacy of current standards in early detection of bacterial response to antibiotics and affordability of contemporarily used methods. This paper presents a novel way to conduct AST which hybridizes disk diffusion AST with microwave resonators for rapid, contactless, and non-invasive sensing and monitoring. In this research, the effect of antibiotic (erythromycin) concentrations on test bacterium, Escherichia coli (E. coli) cultured on solid agar medium (MH agar) are monitored through employing a microwave split-ring resonator. A one-port microwave resonator operating at a 1.76 GHz resonant frequency, featuring a 5 mm2 sensitive sensing region, was designed and optimized to perform this. Upon introducing uninhibited growth of the bacteria, the sensor measured 0.005 dB/hr, with a maximum change of 0.07 dB over the course of 15 hours. The amplitude change decreased to negligible values to signify inhibited growth of the bacteria at higher concentrations of antibiotics, such as a change of 0.005 dB in resonant amplitude variation while using 45 µg of antibiotic. Moreover, this sensor demonstrated decisive results of antibiotic susceptibility in under 6 hours and shows great promise to expand automation to the intricate AST workflow in clinical settings, while providing rapid, sensitive, and non-invasive detection capabilities.


Assuntos
Antibacterianos/farmacologia , Técnicas Biossensoriais/instrumentação , Meios de Cultura/farmacologia , Escherichia coli/crescimento & desenvolvimento , Técnicas Bacteriológicas/instrumentação , Meios de Cultura/química , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Campos Eletromagnéticos , Eritromicina/farmacologia , Escherichia coli/efeitos dos fármacos , Micro-Ondas
13.
mSphere ; 6(3): e0035621, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34160235

RESUMO

The reversibility of antibiotic resistance is theoretically attractive due to the prospect of restoring the clinical potency of antibiotics. It is important to find out the factors that affect the reversibility of antibiotic resistance. Here, an mcr-1-positive multidrug-resistant (MDR) environmental Escherichia coli isolate was successively passaged under four antibiotic-free culture conditions. The relative abundances of multiple antibiotic resistance genes (ARGs) kept decreasing during the successive passages. The linear correlations between abundances of ARGs on the same MDR plasmid reflected that the decay of antibiotic resistance during the passage was mainly due to the elimination of the MDR plasmid (pMCR_W5-6). Colistin-susceptible strains were isolated at the end of the passage. The whole-genome sequencing of two susceptible isolates detected the elimination of the MDR plasmid and deletion of the mcr-1 gene. Deletions of DNA fragments from chromosome and plasmid were closely related to a variety of insertion sequences (ISs). The results of coculture of resistant and susceptible strains at different antibiotic concentrations indicated that the high fitness cost led to the poor stability of mobile ARGs. Strict control of the use of antibiotics can at least reverse the severe antibiotic resistance caused by mobile ARGs of high fitness cost. IMPORTANCE The dissemination of bacterial antibiotic resistance is a serious threat to human health. The development of new antibiotics faces both economic and technological challenges. The reversibility of antibiotic resistance has become an important issue causing wide concern due to the prospect of restoring the clinical potency of antibiotics. Our study suggests that the high mobility of ARGs of high fitness cost may just reflect their poor stability. Therefore, strict control of the use of antibiotics can at least reverse the severe antibiotic resistance caused by mobile ARGs of high fitness cost. This study brings hope for the possibility of curbing the dissemination of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Aptidão Genética , Plasmídeos , Sequenciamento Completo do Genoma
14.
Am J Emerg Med ; 49: 304-309, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34182275

RESUMO

BACKGROUND AND IMPORTANCE: Inadequate initial antibiotic treatment of ESBL urinary tract infections (UTI) can lead to increase in the number of antibiotics used, return visits, longer hospitalizations, increased morbidity and mortality and increased costs. Given the important health implications on patients, this study aimed to examine the prevalence and predictors of ESBL UTIs among Emergency Department (ED) patients of a tertiary care center in Beirut, Lebanon. DESIGN, SETTING AND PARTICIPANTS: Single-center retrospective observational study involving all adult UTI patients who presented to the ED of the American University of Beirut Medical Center, a tertiary care center between August 2019 and August 2020. RESULTS: Out of the 886 patients that were included, 24.9% had an ESBL organism identified by urine culture. They had higher bladder catheter use within the previous 90 days, antibiotic use within last 90 days, and were more likely to have a history of an ESBL producing isolate from any body site in the last year. Antibiotic use in the last 90 days and a history of ESBL producing isolate at any site in the previous year were significantly associated with developing an ESBL UTI (OR = 1.66, p = 0.001 and OR = 2.53, p < 0.001 respectively). Patients diagnosed with cystitis were less likely to have an ESBL organism (OR = 0.4 95%CI [0.20-0.81], p = 0.01) CONCLUSION: The prevalence of ESBL organisms was found to be 24.9% in urinary tract infections. The predictors of an ESBL UTI infection were antibiotic use in the last 90 days, a history of ESBL producing isolate at any site in the previous year. Based on the findings of our study, we can consider modifying initial empiric antibiotic treatment for patients presenting with a UTI with the above stated risk factors.


Assuntos
Infecções Urinárias/microbiologia , beta-Lactamases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Distribuição de Qui-Quadrado , Serviço Hospitalar de Emergência/organização & administração , Serviço Hospitalar de Emergência/estatística & dados numéricos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Infecções por Escherichia coli/tratamento farmacológico , Feminino , Humanos , Líbano , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Fatores de Risco , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , beta-Lactamases/efeitos dos fármacos
15.
Sci Rep ; 11(1): 10890, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035354

RESUMO

There is a continuing need to prevent the increasing use of common antibiotic and find the replacement to combat the drug/antibiotic resistant bacteria such as antimicrobial peptides (AMPs) such as thanatin peptide. In this study, recombinant thanatin peptide was expressed in the HEK293 cell line. Then the antimicrobial properties of this peptide on some poultry and farm animal's pathogen strains were assessed. The thermal-stability of thanatin was predicted in various temperatures through in silico analysis. Afterwards, according to Minimum Inhibitory Concentration (MIC) results, Escherichia coli and Pseudomonas aeruginosa were chosen to test the hypothesis of LptA/LptD-thanatin interaction, computationally. Relative amino acid sequences and crystallography structures were retrieved and missed tertiary structures were predicted. The interaction of thanatin with LptA and LptD of Escherichia coli and Pseudomonas aeruginosa were analyzed subsequently. The antibacterial activity of thanatin peptide was evaluated between 6.25 and 100 µg/mL using minimum inhibitory concentration. Also, the amounts of minimum bactericidal concentrations (MBC) were between 12.5 and 200 µg/mL. The bioinformatics analysis followed by the in vitro assessment, demonstrated that thanatin would be thermally stable in the body temperature of poultry and farm animals. Thanatin could penetrate to the outer membrane domain of LptD in Escherichia coli and it could block the transition path of this protein while the entrance of LptD in Pseudomonas aeruginosa was blocked for thanatin by extra residues in comparison with Escherichia coli LptD. In addition, the quality of interaction, with regard to the number and distance of interactions which leads to higher binding energy for thanatin and LptD of Escherichia coli was much better than Pseudomonas aeruginosa. But the site and quality of interaction for thanatin and LptA was almost the same for Escherichia coli and Pseudomonas aeruginosa. Accordingly, thanatin can prevent the assembly of LptA periplasmic bridge in both pathogens. The antibacterial and thermal stability of the thanatin peptide suggested that thanatin peptide might serve as a natural alternative instead of common antibiotics in the veterinary medicine. The outcome of this in silico study supports the MIC results. Therefore, a probable reason for different level of activity of thanatin against Escherichia coli and Pseudomonas aeruginosa might be the quality of LptA/LptD-thanatin interaction.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Transporte/química , Gado/microbiologia , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Bactérias/química , Biologia Computacional/métodos , Estabilidade de Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Aves Domésticas/microbiologia , Conformação Proteica , Domínios Proteicos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Termodinâmica
16.
J Basic Microbiol ; 61(7): 603-611, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33983661

RESUMO

Curcumin nanoparticles were most recently considered in medical research because of their antibacterial properties. The main objective of the study was to develop the green synthesis and antibacterial activity of curcumin nanoparticles using Curcuma longa. The processing of curcumin nanoparticles was carried out after the collection, identification, and extraction of curcumin. The effect of a sample on the synthesis of nanoparticles, such as curcumin aqueous concentrations (5, 10, and 20 mg/ml) and curcumin nanoparticles (5, 10, and 20 mg/ml), and the antibacterial effect of these nanoparticles on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and the fungal strain Aspergillus niger. For examining antibacterial and anti-fungal activity disc diffusion method was performed, followed by the zone of inhibition. According to X-ray diffraction and scanning electron microscope analysis, nanoparticles have spherical shapes and size of 42.64 nm. Results showed that a high dose of 20 mg/ml curcumin nanoparticles have more antibacterial activity than curcumin extracts in E. coli as it showed the largest diameter of zone of inhibition as compared to other doses. Other bacterial and fungal strains also showed significant results but E. coli was most prominent. The biosynthesis of curcumin nanoparticles using an aqueous extract of C. longa is a clean, inexpensive, and safe method that has not been used any toxic substance and consequently does not have side effects. Since several pathogenic species have acquired antibiotic resistance, the combination of curcumin with various nanoparticles would be beneficial in the cure of pathogenic diseases.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Aspergillus niger/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Curcuma/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Bactérias/classificação , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
17.
ACS Appl Mater Interfaces ; 13(15): 17586-17598, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33847119

RESUMO

Exploring active and ecological materials for the restoration of complex pollution system is highly desired. This study presents a facile defect-tailoring strategy for combined pollutants purification with BiVO4 photocatalysis in which the jointed synchronous reaction of oxidation and reduction is integrated instead of the sequential reaction in two individual systems. XPS and EPR reveal that BiVO4 with a suitable oxygen vacancies (OVs) concentration and distribution exhibits superior photocatalytic activity under the coexistence of TC-HCl and Cr(VI) with Cr(VI) reduction efficiency increased by 71 times compared with the individual Cr(VI) system along with TC-HCl removal efficiency comparable to a single TC-HCl system. The mechanism of synchronous redox reactions mediated by surface OVs is revealed by comprehensive characterization together with reaction kinetic analysis, and the electronic band structure adjustment induced by the OVs variation is confirmed. Active species identification tests and intermediate product analysis confirm that singlet oxygen (1O2) accounts for the selective oxidation of TC-HCl, while electrons dominate the reduction of Cr(VI), under a coexistent environment. The influence of water quality parameters (e.g., pH, cations, anions, and organic substances) on the photocatalytic activity is investigated considering the complexity of the real aquatic environment. Importantly, toxicity assessment with Gram-negative strain E. coli as a model bacterium validates that the toxicity of the intermediates can be reduced to low or even ultralow levels. This work is dedicated to the mechanistic study of defect photocatalysis over BiVO4 and provides a jointed synchronous reaction system for combined pollutant purification.


Assuntos
Bismuto/química , Bismuto/toxicidade , Cromatos/química , Processos Fotoquímicos , Vanadatos/química , Vanadatos/toxicidade , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Oxirredução
18.
Food Chem Toxicol ; 152: 112226, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33905759

RESUMO

In this experimental work, sodium carboxymethyl beta-glucan (CMBG), a chemically altered beta-glucan, is evaluated for mutagenicity and sub-acute oral toxicity. Specifically, the tested material was CM-Glucan Nu, a food grade powder ≥90% CMBG derived from Saccharomyces cerevisiae. A bacterial reverse mutation test was performed and resulted in no mutagenicity. A 28-day, repeated-dose, oral (gavage) toxicity test on rats was performed at dose levels of 0, 500, 1000, and 2000 mg/kg bw/day. No mortality, target organs or other treatment related effects were observed. The no observed adverse effect level (NOAEL) was 2000 mg/kg bw/day, the highest dose tested, for both male and female Han:WIST rats.


Assuntos
beta-Glucanas/toxicidade , Administração Oral , Animais , Escherichia coli/efeitos dos fármacos , Feminino , Masculino , Testes de Mutagenicidade , Nível de Efeito Adverso não Observado , Ratos Wistar , Saccharomyces cerevisiae/química , Salmonella typhimurium/efeitos dos fármacos , Testes de Toxicidade Subaguda , beta-Glucanas/administração & dosagem
19.
Int J Food Microbiol ; 346: 109164, 2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-33813365

RESUMO

The aim of the study was to assess the presence of genes in ESBL-producing E. coli (ESBL-Ec) isolated from retail raw food in Nha Trang, Vietnam. A total of 452 food samples comprising chicken (n = 116), pork (n = 112), fish (n = 112) and shrimp (n = 112) collected between 2015 and 2017 were examined for the prevalence of ESBL-Ec. ESBL-Ec were detected in 46.0% (208/452) of retail food samples, particularly in 66.4% (77/116), 55.4% (62/112), 42.0% (47/112) 19.6% (22/112) of chicken, pork, fish and shrimp, respectively. Sixty-five out of the 208 (31.3%) ESBL-Ec isolates were positive for mcr genes including mcr-1, mcr-3 and both mcr-1 and mcr-3 genes in 56/208 (26.9%), 1/208 (0.5%) and 8/208 (3.9%) isolates, respectively. Particularly, there was higher prevalence of mcr-1 in ESBL-Ec isolates from chicken (53.2%, 41/77) in comparison to shrimp (22.7%, 5/22), pork (11.3%, 7/62) and fish (6.4%, 3/47). mcr-3 gene was detected in co-existence with mcr-1 in ESBL-Ec isolates from shrimp (9.1%, 2/22), pork (8.1%, 5/62) and fish (2.1%, 1/47) but not chicken. The 65 mcr-positive ESBL-Ec (mcr-ESBL-Ec) were colistin-resistant with the MICs of 4-8 µg/mL. All mcr-3 gene-positive isolates belonged to group A, whereas phylogenetic group distribution of isolates harboring only mcr-1 was B1 (44.6%), A (28.6%) and D (26.8%). PFGE analysis showed diverse genotypes, although some isolates demonstrated nearly clonal relationships. S1-PFGE and Southern hybridization illustrated that the mcr-1 and mcr-3 genes were located either on chromosomes or on plasmids. However, the types of mcr genes were harbored on different plasmids with varied sizes of 30-390 kb. Besides, the ESBL genes of CTX-M-1 or CTX-M-9 were also detected to be located on plasmids. Noteworthy, co-location of CTX-M-1 with mcr-1 or mcr-3 genes on the same plasmid was identified. The conjugation experiment indicated that the mcr-1 or mcr-3 was horizontally transferable. All mcr-ESBL-Ec isolates were multidrug resistance (resistance to ≥3 antimicrobial classes). Moreover, ß-Lactamase-encoding genes of the CTX-M-1 (78.5%), CTX-M-9 (21.5%), TEM (61.5%) groups were found in mcr-ESBL-Ec. The astA gene was detected in 27 (41.5%) mcr-ESBL-Ec isolates demonstrating their potential virulence. In conclusion, mcr-1 and mcr-3 genes existed individually or concurrently in ESBL-Ec isolates recovered from retail raw food in Nha Trang city, which might further complicate the antimicrobial-resistant situation in Vietnam, and is a possible health risk for human.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Carne/microbiologia , Alimentos Crus/microbiologia , beta-Lactamases/genética , Animais , Galinhas , Farmacorresistência Bacteriana , Escherichia coli/classificação , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peixes , Contaminação de Alimentos/análise , Contaminação de Alimentos/estatística & dados numéricos , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Plasmídeos/metabolismo , Prevalência , Alimentos Crus/economia , Suínos , Vietnã , beta-Lactamases/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-33760710

RESUMO

There is currently controversy over the use of quantum dots (QDs) in biological applications due to their toxic effects. Therefore, the purpose of the present study was to evaluate the toxic effect of chemical and biogenic (synthesized by Fusarium oxysporum f. sp. lycopersici) cadmium sulfide quantum dots (CdSQDs) using a bacterial model of Escherichia coli and sprouts of Lactuca sativa L. with the aim to foresee its use in the near future in biological systems. Physicochemical properties of both types of CdSQDs were determined by TEM, XRD, zeta potential and fluorescence spectroscopy. Both biogenic and chemical CdSQDs showed agglomerates of spherical CdSQDs with diameters of 4.14 nm and 3.2 nm, respectively. The fluorescence analysis showed a band around 361 nm in both CdSQDs, the zeta potential was -1.81 mV for the biogenic CdSQDs and -5.85 mv for the chemical CdSQDs. Results showed that chemical CdSQDs, presented inhibition in the proliferation of E. coli cell in a dose-dependent manner, unlike biogenic CdSQDs, that only at its highest concentration showed an antibacterial activity. Also, it was observed that after incubation with chemical and biogenic CdSQDs of L. sativa L. seeds, only the biogenic CdSQDs showed no inhibition on seed germination. In summary, our results suggest that the production route has a significant effect on the toxicity of QDs; in addition, it seems that the biological coating of the CdSQDs from F. oxysporum f. sp. lycopersici inhibit their toxic effect on bacterial strains and plant seeds.


Assuntos
Compostos de Cádmio/metabolismo , Fusarium/metabolismo , Lactuca/efeitos dos fármacos , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Sementes/efeitos dos fármacos , Sulfetos/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Compostos de Cádmio/química , Escherichia coli/efeitos dos fármacos , Espectrometria de Fluorescência , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA